142 research outputs found

    Polarizing Double Negation Translations

    Get PDF
    Double-negation translations are used to encode and decode classical proofs in intuitionistic logic. We show that, in the cut-free fragment, we can simplify the translations and introduce fewer negations. To achieve this, we consider the polarization of the formul{\ae}{} and adapt those translation to the different connectives and quantifiers. We show that the embedding results still hold, using a customized version of the focused classical sequent calculus. We also prove the latter equivalent to more usual versions of the sequent calculus. This polarization process allows lighter embeddings, and sheds some light on the relationship between intuitionistic and classical connectives

    Rewriting Logic Semantics of a Plan Execution Language

    Get PDF
    The Plan Execution Interchange Language (PLEXIL) is a synchronous language developed by NASA to support autonomous spacecraft operations. In this paper, we propose a rewriting logic semantics of PLEXIL in Maude, a high-performance logical engine. The rewriting logic semantics is by itself a formal interpreter of the language and can be used as a semantic benchmark for the implementation of PLEXIL executives. The implementation in Maude has the additional benefit of making available to PLEXIL designers and developers all the formal analysis and verification tools provided by Maude. The formalization of the PLEXIL semantics in rewriting logic poses an interesting challenge due to the synchronous nature of the language and the prioritized rules defining its semantics. To overcome this difficulty, we propose a general procedure for simulating synchronous set relations in rewriting logic that is sound and, for deterministic relations, complete. We also report on two issues at the design level of the original PLEXIL semantics that were identified with the help of the executable specification in Maude

    A Completion Method to Decide Reachability in Rewrite Systems

    Get PDF
    International audienceThe Knuth-Bendix method takes in argument a finite set of equations and rewrite rules and, when it succeeds, returns an algorithm to decide if a term is equivalent to another modulo these equations and rules. In this paper, we design a similar method that takes in argument a finite set of rewrite rules and, when it succeeds, returns an algorithm to decide not equivalence but reachability modulo these rules, that is if a term reduces to another. As an application, we give new proofs of the decidability of reachability in finite ground rewrite systems and in pushdown systems

    Verification of PCP-Related Computational Reductions in Coq

    Full text link
    We formally verify several computational reductions concerning the Post correspondence problem (PCP) using the proof assistant Coq. Our verifications include a reduction of a string rewriting problem generalising the halting problem for Turing machines to PCP, and reductions of PCP to the intersection problem and the palindrome problem for context-free grammars. Interestingly, rigorous correctness proofs for some of the reductions are missing in the literature

    Resolution in Solving Graph Problems

    Get PDF
    International audienceResolution is a proof-search method for proving unsatisfia-bility problems. Various refinements have been proposed to improve the efficiency of this method. However, when we try to prove some graph properties, it seems that none of the refinements have an efficiency comparable with traditional graph traversal algorithms. In this paper we propose a way of encoding some graph problems as resolution. We define a selection function and a new subsumption rule to avoid redundancies while solving such problems

    A proposal for broad spectrum proof certificates

    Get PDF
    International audienceRecent developments in the theory of focused proof systems provide flexible means for structuring proofs within the sequent calculus. This structuring is organized around the construction of ''macro'' level inference rules based on the ''micro'' inference rules which introduce single logical connectives. After presenting focused proof systems for first-order classical logics (one with and one without fixed points and equality) we illustrate several examples of proof certificates formats that are derived naturally from the structure of such focused proof systems. In principle, a proof certificate contains two parts: the first part describes how macro rules are defined in terms of micro rules and the second part describes a particular proof object using the macro rules. The first part, which is based on the vocabulary of focused proof systems, describes a collection of macro rules that can be used to directly present the structure of proof evidence captured by a particular class of computational logic systems. While such proof certificates can capture a wide variety of proof structures, a proof checker can remain simple since it must only understand the micro-rules and the discipline of focusing. Since proofs and proof certificates are often likely to be large, there must be some flexibility in allowing proof certificates to elide subproofs: as a result, proof checkers will necessarily be required to perform (bounded) proof search in order to reconstruct missing subproofs. Thus, proof checkers will need to do unification and restricted backtracking search

    A Focused Sequent Calculus Framework for Proof Search in Pure Type Systems

    Get PDF
    Basic proof-search tactics in logic and type theory can be seen as the root-first applications of rules in an appropriate sequent calculus, preferably without the redundancies generated by permutation of rules. This paper addresses the issues of defining such sequent calculi for Pure Type Systems (PTS, which were originally presented in natural deduction style) and then organizing their rules for effective proof-search. We introduce the idea of Pure Type Sequent Calculus with meta-variables (PTSCalpha), by enriching the syntax of a permutation-free sequent calculus for propositional logic due to Herbelin, which is strongly related to natural deduction and already well adapted to proof-search. The operational semantics is adapted from Herbelin's and is defined by a system of local rewrite rules as in cut-elimination, using explicit substitutions. We prove confluence for this system. Restricting our attention to PTSC, a type system for the ground terms of this system, we obtain the Subject Reduction property and show that each PTSC is logically equivalent to its corresponding PTS, and the former is strongly normalising iff the latter is. We show how to make the logical rules of PTSC into a syntax-directed system PS for proof-search, by incorporating the conversion rules as in syntax-directed presentations of the PTS rules for type-checking. Finally, we consider how to use the explicitly scoped meta-variables of PTSCalpha to represent partial proof-terms, and use them to analyse interactive proof construction. This sets up a framework PE in which we are able to study proof-search strategies, type inhabitant enumeration and (higher-order) unification

    The play's the thing

    Get PDF
    For very understandable reasons phenomenological approaches predominate in the field of sensory urbanism. This paper does not seek to add to that particular discourse. Rather it takes Rorty’s postmodernized Pragmatism as its starting point and develops a position on the role of multi-modal design representation in the design process as a means of admitting many voices and managing multidisciplinary collaboration. This paper will interrogate some of the concepts underpinning the Sensory Urbanism project to help define the scope of interest in multi-modal representations. It will then explore a range of techniques and approaches developed by artists and designers during the past fifty years or so and comment on how they might inform the question of multi-modal representation. In conclusion I will argue that we should develop a heterogeneous tool kit that adopts, adapts and re-invents existing methods because this will better serve our purposes during the exploratory phase(s) of any design project that deals with complexity
    • …
    corecore